We've talked about unisons, fourths, fifths and octaves, but what about the rest? Are these other intervals somehow imperfect?

Well, yes, but not because they are somehow inferior to perfect intervals... seconds, thirds, sixths and sevenths just work a little differently!

For one thing, the inflection for these intervals is never perfect! It will be either major or minor. Minor intervals are a semitone smaller than major intervals. Like perfect intervals, though, they can also be augmented or diminished! Augmented intervals are a semitone larger than major, and diminished intervals are a semitone smaller than minor.

How do we know if an interval is major or minor? We can actually use the major scale to find out. Notice that, in the major scale, intervals from the tonic up to another scale degree are major.

Likewise, intervals from the tonic down to another scale degree are minor.

Knowing this, when you are confronted with a second, third, sixth or seventh, you can find its inflection by thinking about the key signature of the top and/or bottom note.

We know this is a major sixth because D, the top note, is in the key of F major (the bottom note).

And this is a minor seventh because B, bottom note, is in the key of A major (the top note).

If the top note is in the major key of the bottom note, the interval is major. If the bottom note is in the major key of the top note, the interval is minor.

When the notes of the interval have accidentals, the associated key signatures can be more complicated... so it's easiest to temporarily ignore the accidentals, determine the interval, and then add the accidentals back one at a time and track how the interval changes!

Ack! What is that? Let's first hide the accidentals...

E is in the key of G, so we know this is a major sixth.

Adding back the flat makes the interval smaller, so it's now a minor sixth...

Adding back the sharp makes it even smaller... a diminished sixth!